0 Items - $0.00
A to Z

Alternative structural projections:


8- (4- Chlorophenylthio)- 2'- O- methyladenosine- 3', 5'- cyclic monophosphorothioate, Sp- isomer ( Sp-8-pCPT-2'-O-Me-cAMPS ), sodium salt
PDE-resistant, membrane-permeant Epac agonist
Cat. No.: C 052
CAS No.: [634208-37-0]
Shipping: ambient
Product Name Price (net) Qty
Cat. No.: C 052-01
Unit: 1 µmol / ~0.5 mg
For other salt forms please inquire. Hydrolysis-resistant form of  8-pCPT-2'-O-Me-cAMP (Cat. No. C 041), a specific activator of the exchange protein directly activated by cyclic AMP (Epac) or cAMP-GEF, respectively. The compound does not activate protein kinase A, has high lipophilicity and membrane permeability and is not metabolized by phosphodiesterases. Detailed technical information available. References: Laxman et al., Proc. Natl. Acad. Sci. USA, 103, 19194 - 19199 (2006); Ouyang et al., Proc. Natl. Acad. Sci. USA, 105, 11993 - 11997 (2008).
Cat. No. C 052
CAS number [634208-37-0]
Purity > 98% HPLC
Salt form Sodium
Storage temperature -20°C / -4°F
Molecular formula C₁₇H₁₆ClN₅O₅PS₂ · Na
Molecular weight [g/mol] 523.9
cAMP modified at the exocyclic oxygen axial (Sp-)
Modifications 8-cAMP, 2'-cAMP
Target Epac Activator
Lipophilicity 3.05
Absorption max [nm] 282
Molar extinction coefficient ε [L·mol⁻¹·cm⁻¹] 16000
  • 1. Schwede F., Bertinetti D., Langerijs C. N., Hadders M. A., Wienk H., Ellenbroek J. H., de Koning E. J. P., Bos J. L., Herberg F. W., Genieser H.-G., Janssen R. A.Rehmann H., PLoS Biol., 13, 1 - 26 (2015), "Structure-Guided Design of Selective Epac1 and Epac2 Agonists"
  • 2. Chepurny O. G., Bertinetti D., Diskar M., Leech C. A., Afshari P., Tsalkova T., Cheng X., Schwede F., Genieser H.-G., Herberg F. W.Holz G. G., Mol. Endocrinol., 27, 1267 - 1282 (2013), "Stimulation of Proglucagon Gene Expression by Human GPR119 in Enteroendocrine L-cell Line GLUTag"
  • 3. Herfindal L., Nygaard G., Kopperud R., Krakstad C., Doeskeland S. O.Selheim F., Biochem. Biophys. Res. Commun., 437, 603 - 608 (2013), "Off-Target Effect of the Epac Agonist 8-pCPT-2'-O-Me-cAMP on P2Y12 Receptors in Blood Platelets"
  • 4. Roscioni S. S., Maarsingh H., Elzinga C. R. S., Schuur J., Menzen M., Halayko A. J., Meurs H.Schmidt M., J. Cell. Mol. Med., 15, 1551 - 1563 (2011), "Epac as a Novel Effector of Airway Smooth Muscle Relaxation"
  • 5. Werner K., Schwede F., Genieser H.-G., Geiger J.Butt E., Naunyn Schmiedebergs Arch. Pharmacol., 384, 169 - 176 (2011), "Quantification of cAMP and cGMP Analogs in Intact Cells: Pitfalls in Enzyme Immunoassays for Cyclic Nucleotides"
  • 6. Enyeart J. A., Liu H.Enyeart J. J., Am. J. Physiol. Endocrinol. Metab., 301, 941 - 954 (2011), "8-Phenylthio-adenines Stimulate the Expression of Steroid Hydroxylases, Cav3.2 Ca2+ Channels, and Cortisol Synthesis by a cAMP-independent Mechanism"
  • 7. Liu H., Enyeart J. J.Enyeart J. A., J. Biol. Chem., 285, 20040 - 20050 (2010), "ACTH Induces CAv3.2. Current and mRNA by cAMP-dependent and cAMP-independent Mechanism"
  • 8. Dzhura I., Chepurny O. G., Kelley G. G., Leech C. A., Roe M. W., Dzhura E., Afshari P., Malik S., Rindler M. J., Xu X., Lu Y., Smrcka A. V.Holz G. G., J. Physiol., 588, 4871 - 4889 (2010), "EPAC2-dependent Mobilization of Intracellular Ca2+ by Glucagon-like Peptide-1 Receptor Agonist Exendin-4 is Disrupted in Beta-Cells of Phospholipase C-Epsilon Knockout Mice"
  • 9. Waidmann O., Pleli T., Dvorak K., Baehr C., Mondorf U., Plotz G., Biondi R. M., Zeuzem S.Piiper A., J.Biol.Chem., 284, 32256 - 32263 (2009), "Inhibition of the Equilibrative Nucleoside Transporter 1 and Activation of A2A Adenosine Receptors by 8-(4-Chlorophenylthio)-modified cAMP Analogs and their Hydrolytic Products"
  • 10. Yokoyama U., Patel H. H., Lai N. C., Aroonsakool N., Roth D. M.Insel P. A., PNAS, 105, 6386 - 6391 (2008), "The cyclic AMP Effector Epac Integrates Pro- and Anti-fibrotic Signals"
  • 11. Poppe H., Rybalkin S. D., Rehmann H., Hinds T. R., Tang X.-B., Christensen A. E., Schwede F., Genieser H.-G., Bos J. L., Doeskeland S. O., Beavo J. A.Butt E., Nature Methods, 5, 277 - 278 (2008), "Cyclic Nucleotide Analogs as Probes of Signaling Pathways"
  • 12. Holz G. G., Chepurny O. G.Schwede F., Cell. Signal., 20, 10 - 20 (2008), "Epac-selective cAMP Analogs: New Tools with which to Evaluate the Signal Transduction Properties of cAMP-regulated Guanine Nucleotide Exchange Factors"
  • 13. Kang G., Leech C. A., Chepurny O. G., Coetzee W. A.Holz G. G., J. Physiol., 587, 1307 - 1319 (2008), "Role of the cAMP Sensor Epac as a Determinant of K-ATP Channel ATP-Sensitivity in Human Pancreatic β-Cells and RAT INS-1 Cells"
  • 14. O'Neill J. S., Maywood E. S., Chesham J. E., Takahashi J. S.Hastings M. H., Science, 320, 949 - 953 (2008), "cAMP-Dependent Signaling as a Core Component of the Mammalian Circadian Pacemaker"
  • 15. Harrisingh M. C.Nitabach M. N., Science, 320, 879 - 880 (2008), "Integrating Circadian Timekeeping with Cellular Physiology"
  • 16. Ouyang M., Zhang L., Zhu J. J., Schwede F.Thomas S. A., PNAS, 105, 11993 - 11997 (2008), "Epac Signaling is Required for Hippocampus-dependent Memory Retrieval"
  • 17. Haag S., Warnken M., Juergens U. R.Racke K., Naunyn-Schmiedeberg's Arch. Pharmacol., 378, 617 - 630 (2008), "Role of Epac1 in Mediating Anti-proliferative Effects of Prostanoid EP2 Receptors and cAMP in Human Lung Fibroblasts"
  • 18. Laxman S., Riechers A., Sadilek M., Schwede F.Beavo J. A., PNAS, 103, 19194 - 19199 (2006), "Hydrolysis Products of cAMP Analogs Cause Transformation of Trypanosoma Brucei from Slender to Stumpy-like Forms"