Technical Information about Rp-8-CPT-cAMPS

Potent membrane permeant, PDE resistant inhibitor of cAMP-dependent protein kinase type I and type II

Update: June 09, 2017

Abbreviation: Rp-8-CPT-cAMPS

<table>
<thead>
<tr>
<th>Formula</th>
<th>CAS No.</th>
<th>Molecular Weight</th>
<th>UV</th>
<th>BIOLOG Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{16}H_{14}ClN_{3}O_{3}PS_{2}Na</td>
<td>[129735-01-9]</td>
<td>509.8</td>
<td>(\lambda_{\text{max}} 282 \text{ nm} / \varepsilon 16000 / \text{pH}7)</td>
<td>C 011</td>
</tr>
</tbody>
</table>

Name: 8- (4- Chlorophenylthio)adenosine- 3', 5'- cyclic monophosphorothioate, Rp- isomer (Rp-8-CPT-cAMPS)

Description: Rp-8-CPT-cAMPS is an analogue of the parent second messenger cyclic AMP where the hydrogen in position 8 of the nucleobase is replaced by the lipophilic chlorophenylthio moiety. In addition, the equatorial one of the two exocyclic oxygen atoms in the cyclic phosphate is modified by sulfur (R-isomer). The suffix "p" indicates that R/S nomenclature refers to phosphorus. The compound can be considered as a combination of the well known derivative 8-CPT-cAMPS.

Properties:
- site selective inhibitor of protein kinase A type I and II, preferring site A of type I and site B of type II (Dostmann et al. 1990, Gjertsen et al. 1995),
- metabolic stability towards mammalian cyclic nucleotide-responsive phosphodiesterases,
- high lipophilicity and good membrane permeability while still soluble in aqueous solvents (Genieser 1995),
- can discriminate between protein kinase A (antagonist) and some other cyclic AMP receptors, e.g. ion channels (agonist).

Summing up, Rp-8-CPT-cAMPS is a membrane-permeant inhibitor of protein kinase A type I and type II. Its metabolic stability avoids potential side effects through active metabolites. In contrast to common ATP-site inhibitors, Rp-8-CPT-cAMPS occupies cAMP binding sites at the regulatory subunit of PKA and prevents the kinase holoenzyme from dissociation and thus from activation. Due to this working principle, preincubation of the inhibitor prior to the activation step is necessary for optimal results.

Specification: Crystallized or lyophilized sodium salt. Other salt forms of Rp-8-CPT-cAMPS are available upon request. Please keep in mind that equal amounts of the compound may look different in volume depending on humidity. Micromolar quantities are determined by UV at \(\lambda_{\text{max}}\). The agonistic Sp-isomer (Sp-8-CPT-cAMPS) is offered by BIOLOG as well (Cat. No. C 012).

Purity: Typical analysis is better than 99% (HPLC / UV / 282 nm). The product is not sterile and has not been tested for endotoxins.

Stability and Storage: Rp-8-CPT-cAMPS has sufficient stability at room temperature and does not need special care during handling or shipment. Nevertheless, the compound and its solutions should be protected from bright light, stored in the freezer, for longer storage periods preferably in freeze-dried form, since the agonistic 8-CPT-cAMP can be formed slowly by oxidation processes.

Application: Experience shows that applicable concentrations of Rp-8-CPT-cAMPS depend on the type of biosystem, its membrane properties and kinase content. A main application for Rp-8-CPT-cAMPS is to eliminate the first messenger-stimulated phosphorylation by cyclic AMP-dependent protein kinase. For this purpose preincubation (e.g. 20 min) is important since the production of intracellular cyclic AMP initiated by a first messenger is much faster than the antagonist can penetrate the membrane when given extracellularly. Since Rp-8-CPT-cAMPS is hydrolytically stable in mammalian and many other systems there is no danger of degradation during incubation periods. If you have good or moderate results with 8-CPT-cAMP or Rp-cAMPS, you can be sure that Rp-8-CPT-cAMPS will be membrane-permeant in your system as well.
Solubility: Detailed information on the solubility of Rp-8-CPT-cAMPS in water and various buffers are listed in the solubility chart below. Concentrations have been determined at ambient temperature and can be considered as minimum concentrations usually obtainable, however, slight batch-to-batch variations cannot be ruled out. When opening the tube please make sure that no substance is lost within the cap. Please rinse tube walls carefully and preferably use ultrasonic or vortex to achieve total and uniform mixing.

<table>
<thead>
<tr>
<th>No.</th>
<th>Solvent</th>
<th>Solubility [mM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>H2O</td>
<td>100</td>
</tr>
<tr>
<td>II</td>
<td>DMSO</td>
<td>100</td>
</tr>
<tr>
<td>III</td>
<td>DMF</td>
<td>100</td>
</tr>
<tr>
<td>IV</td>
<td>Ethanol 96%</td>
<td>100</td>
</tr>
<tr>
<td>V</td>
<td>Methanol</td>
<td>100</td>
</tr>
<tr>
<td>VI</td>
<td>PBS, pH 7.4</td>
<td>100</td>
</tr>
<tr>
<td>VII</td>
<td>100 mM Na2HPO4, pH 7.0</td>
<td>100</td>
</tr>
<tr>
<td>VIII</td>
<td>25 mM Hepes/NaOH, pH 7.2</td>
<td>100</td>
</tr>
<tr>
<td>IX</td>
<td>25 mM Tris/HCl, pH 7.4</td>
<td>100</td>
</tr>
</tbody>
</table>

Toxicity and Safety: Since cyclic AMP has multiple tasks in every organism, it is very likely that lipophilic cAMP analogues will interfere with many cell regulation processes in vivo. However, due to the rather small quantities to work with no health hazards have been reported. Nevertheless please keep in mind that the in vivo properties of this compound are not sufficiently characterized up to now. Avoid skin contact or ingestion and allow only trained personnel to handle the product. Our products are designed, developed and sold for research purposes only. They are intended for in vitro and nonhuman in vivo laboratory applications. Any other use requires approval of health authorities. Not for drug, household or related uses!

Selected References for Rp-8-CPT-cAMPS:
For a detailed list please inquire or visit our website (http://www.biolog.de).

Fricke, K.; Heitland, A.; Maronde, E., Endocrinology, 145, 4940 - 4947 (2004); "Cooperative Activation of Lipolysis by Protein Kinase A and Protein Kinase C Pathways in 3T3-L1 Adipocytes"

Sauzeau, V.; Rolli-Derkindener, M.; Marionneau, C.; Liorand, G.; Pacaud, P., J. Biol. Chem., 278, 9472 - 9480 (2003): "RhoA Expression is Controlled by Nitric Oxide through cGMP-dependent Protein Kinase Activation"

Spicuzza, L.; Belvisi, M.G.; Birrell, M.A.; Barnes, P.J.; Hele, D.J.; Giembycz, M.A., Br. J. Pharmacol., 133, 1201 - 1212 (2001): "Evidence that the Anti-Spasmodic Effect of the Beta-Adrenoceptor Agonist, Isoprorenaline, on Guinea-Pig Trachealis is not Mediated by Cyclic AMP-dependent Protein Kinase"

Staples, K.J.; Bergmann, M.; Tomita, K.; Houslay, M.D.; McPhee, I.; Barnes, P.J.; Giembycz, M.A.; Newton, R., J. Immunol., 167, 2074 - 2080 (2001): "Adenosine 3′-5′ cyclic Monophosphate (cAMP)-dependent Inhibition of IL-5 from Human T Lymphocytes is not Mediated by the cAMP-dependent Protein Kinase A""

Hemmings, H.C., in Regulatory Protein Modification: Techniques and Protocols; *Neuromethods*, 30, 121 - 218 (1996); H.C. Hemmings (ed.), Humana Press Inc.: "Protein Kinase and Phosphatase Inhibitors. Applications in Neuroscience"

References cited in this Technical Information:

