Technical Information about Rp-8-Cl-cAMPS

Potent membrane permeant, metabolically stable inhibitor of cAMP-dependent protein kinases

Update: June 09, 2017

![Chemical Structure of Rp-8-Cl-cAMPS](image)

Abbreviation: Rp-8-Cl-cAMPS

<table>
<thead>
<tr>
<th>Formula</th>
<th>CAS No.</th>
<th>Molecular Weight</th>
<th>UV</th>
<th>BIOLOG Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{10}H_{12}CIN_{3}O_{3}PSNa</td>
<td>[142754-27-6]</td>
<td>401.7</td>
<td>λ_{max} 262 nm / ε 17000 / pH 7</td>
<td>C 003</td>
</tr>
</tbody>
</table>

Name: 8-Chloroadenosine-3’, 5’-cyclic monophosphorothioate, Rp-isomer

Description: Rp-8-Cl-cAMPS is an analogue of the parent compound cyclic AMP in which the hydrogen in position 8 of the nucleobase is replaced by chlorine and the equatorial one of the two exocyclic oxygen atoms in the cyclic phosphate moiety is modified by sulfur. The suffix "p" indicates that R/S nomenclature refers to phosphorus.

Properties: Rp-8-Cl-cAMPS is a combination of the well accepted protein kinase inhibitor Rp-cAMPS with 8-Cl-cAMP resulting in a membrane-permeant cyclic AMP antagonist which is not metabolized by mammalian cyclic nucleotide phosphodiesterases. Rp-8-Cl-cAMPS is about 1.3 times more lipophilic compared to 8-Cl-cAMP, and 1.7 times and 2.2 times more compared to Rp-cAMPS and cAMP, respectively.

In contrast to common ATP-site inhibitors or to its parent compound Rp-cAMPS, Rp-8-Cl-cAMPS discriminates between both isozymes of protein kinase A preferring type I (Gjertsen et al. 1995) and thus provides additional selectivity. By occupying cAMP binding sites Rp-8-Cl-cAMPS prevents the kinase holoenzyme from dissociation and thus from activation. Due to this working principle preincubation of the inhibitor prior to the activation step is necessary for optimal results.

Application: Experience shows that applicable concentrations of Rp-8-Cl-cAMPS depend on the type of biosystem, its membrane properties and kinase content. A main application for Rp-8-Cl-cAMPS is to eliminate the first messenger-stimulated phosphorylation by cyclic AMP-dependent protein kinase. For this purpose preincubation (e.g. 20 min) is important, since the production of intracellular cyclic AMP initiated by a first messenger is much faster than the antagonist can penetrate the membrane when given extracellularly. Since Rp-8-Cl-cAMPS is hydrolytically stable in mammalian and many other systems there is no danger of degradation during incubation periods. If you have good or moderate results with 8-Br-cAMP or Rp-cAMPS, you can be sure that Rp-8-Cl-cAMPS will be membrane-permeant in your system as well.

Specification: Lyophilized or crystallized sodium salt. The free acid or other salt forms are available upon request. Equal concentrations of Rp-8-Cl-cAMPS can appear very different in volume due to sensitivity of the lyophilized form to humidity and the compound can even contract to small volume droplets. Normally the product is located in the conical bottom of the tube. Micromolar quantities are determined by UV at λ_{max}.

Purity: Typical analysis is better than 99% (HPLC / UV / 262 nm). The product is not sterile and has not been tested for endotoxins. Caution: Since even minor impurities of 8-Cl-cAMP (0.2%) or Sp-8-Cl-cAMPS can already activate protein kinase and compete with the antagonistic effect of the Rp- isomer, it is very important to work with strictly pure compounds concerning cyclic nucleotide contaminants. Therefore Rp-8-Cl-cAMPS is specially checked for absence of both, Sp-8-Cl-cAMPS and 8-Cl-cAMP (< 0.05% when packed). However, we cannot guarantee total absence of 8-Cl-cAMP due to its formation during prolonged storage.

Stability and Storage: Rp-8-Cl-cAMPS has sufficient stability at room temperature and does not need special care during handling or shipment. Nevertheless, we recommend that the compound should be stored in the freezer, for longer storage periods preferably in freeze-dried form, since desulfurization yielding 8-Cl-cAMP can occur slowly. This normally rather slow sulfur/oxygen exchange is accelerated by oxidizing agents.

Stability and Storage: Rp-8-Cl-cAMPS has sufficient stability at room temperature and does not need special care during handling or shipment. Nevertheless, we recommend that the compound should be stored in the freezer, for longer storage periods preferably in freeze-dried form, since desulfurization yielding 8-Cl-cAMP can occur slowly. This normally rather slow sulfur/oxygen exchange is accelerated by oxidizing agents.

Stability and Storage: Rp-8-Cl-cAMPS has sufficient stability at room temperature and does not need special care during handling or shipment. Nevertheless, we recommend that the compound should be stored in the freezer, for longer storage periods preferably in freeze-dried form, since desulfurization yielding 8-Cl-cAMP can occur slowly. This normally rather slow sulfur/oxygen exchange is accelerated by oxidizing agents.

Stability and Storage: Rp-8-Cl-cAMPS has sufficient stability at room temperature and does not need special care during handling or shipment. Nevertheless, we recommend that the compound should be stored in the freezer, for longer storage periods preferably in freeze-dried form, since desulfurization yielding 8-Cl-cAMP can occur slowly. This normally rather slow sulfur/oxygen exchange is accelerated by oxidizing agents.

Stability and Storage: Rp-8-Cl-cAMPS has sufficient stability at room temperature and does not need special care during handling or shipment. Nevertheless, we recommend that the compound should be stored in the freezer, for longer storage periods preferably in freeze-dried form, since desulfurization yielding 8-Cl-cAMP can occur slowly. This normally rather slow sulfur/oxygen exchange is accelerated by oxidizing agents.
Toxicity and Safety: Since cyclic AMP has multiple tasks in every organism, it is very likely that lipophilic cAMP analogues will interfere with many cell regulation processes in vivo. However, due to the rather small quantities to work with, no health hazards have been reported. Nevertheless please keep in mind that the in vivo properties of this compound are not sufficiently characterized up to now. Avoid skin contact or ingestion and allow only trained personnel to handle the product. Our products are designed, developed and sold for research purposes only! They are intended for in vitro and nonhuman in vivo laboratory applications. Any other use requires approval of health authorities. Not for drug, household or related uses!

Solubility: Detailed information on the solubility of Rp-8-Cl-cAMPS in water and various buffers are listed in the solubility chart below. Concentrations have been tested at ambient temperatures and can be considered as minimum concentrations obtainable. When opening the tube please make sure that no substance is lost within the cap. Please rinse tube walls carefully and preferably use ultrasonic or vortex to achieve total and uniform mixing.

Table: Solubility of Rp-8-Cl-cAMPS

<table>
<thead>
<tr>
<th>No.</th>
<th>Solvent</th>
<th>Solubility [mM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>H2O</td>
<td>100</td>
</tr>
<tr>
<td>II</td>
<td>DMSO</td>
<td>100</td>
</tr>
<tr>
<td>III</td>
<td>DMF</td>
<td>100</td>
</tr>
<tr>
<td>IV</td>
<td>Ethanol 96%</td>
<td>100</td>
</tr>
<tr>
<td>V</td>
<td>Methanol</td>
<td>100</td>
</tr>
<tr>
<td>VI</td>
<td>PBS, pH 7.4</td>
<td>100</td>
</tr>
<tr>
<td>VII</td>
<td>100 mM Na2HPO4, pH 7.0</td>
<td>100</td>
</tr>
<tr>
<td>VIII</td>
<td>25 mM Hepes/NaOH, pH 7.2</td>
<td>100</td>
</tr>
<tr>
<td>IX</td>
<td>25 mMTris/HCl, pH 7.4</td>
<td>100</td>
</tr>
</tbody>
</table>

References for Rp-8-Cl-cAMPS:

Hemmings, H.C. in Regulatory Protein Modification: Techniques and Protocols; Neuromethods, 30, 121 - 218 (1996); H.C. Hemmings (ed.), Humana Press Inc.; “Protein Kinase and Phosphatase Inhibitors. Applications in Neuroscience”

Romano, A.; Locatelli, F.; Delorenzi, A.; Pedreira, M.E.; Maldonado, H., Brain Res., 735, 131 - 140 (1996): “Effects of Activation and Inhibition of cAMP-dependent Protein Kinase on Long-Term Habituation in the Crab Chasmagnathus”

Copyright June 17 by BIOLOG Life Science Institute

BIOLOG Life Science Institute, Bremen, Germany Phone: 49 (0) 421 591355 Fax: 49 (0) 421 5979713 e-mail: service@biolog.de

Glazer, R.I.; Rohlf, C., Breast Cancer Res. Treatment, 31, 263 - 271 (1994); "Transcriptional Regulation of Multidrug Resistance in Breast Cancer"

Reference cited in this Technical Information: